OSI UK User Group Newsletter

r Vol.1 No.3 ‘ June 1980

YGS bu.l: whs
does it say
*OK" when
it 1sn’t ?

- Documentation O BASIC program execution O List sorting
Firmware design O OEM ideas O and much other information

Editorial

Back again! with a more generalissue this time: a lively miscellany of commentsand |
ideas on documentation and practical solutions and problems, for both BASIC-in-
ROM and disc systems. We've no ‘main item’ this issue, but there should be
something for everyone. And if not — it’s up to you to provide it! If you have done
something or discovered something, and it’s not in either the ‘manuals’ or in this
Newsletter, we almost certainly don’t know it. So tell us — we are learning as much
as anyone, we aren’t omniscient, and we do need help and information from
everyone in order to help everyone. (And many thanks, of course, to those
members who have helped so far!) When all is said and done, this is your Newsletter.

A change of format
There is one format change in this issue: we’ve moved the User Group Notes and
Dealer Notes from the end, to the middle four pages. Their information tends to be
impermanent, so we thought you’d prefer to have it as a pull-out section that you
can remove if you no longer want it.

Developments

As can be seen in this issue’s Dealer Notes, the number of dealers and software
support services seems to be expanding — a good sign for us all, giving us more
choice and, we would hope, more local service. OSI's own range is expanding too,
with the new version of the old Challenger 2, the C4, not merely promised but here;
and with smaller hard-disc systems (the C2-D and C3-D) and a new version of the C1
known to be on the way. There is also a complete new range of experimenter’s
boards, the CA-20 series, most of which will operate either internally, plugged into
the OSI bus, and/or externally, as ‘remotes’. The published range includes PIA
boards (a new version of the reliable CA-12 board), high-speed analogue-digital
interfaces, a multi-function real-time clock, the AC control system, and an
‘experimenter’s interface board’ with LEDs, switches and a large solderless bread-
board — a very useful range, and at very good prices.

Al in all, a worthwhile range of systems and peripherals. And if OSI’s New
Business Manager, James A. Pike, can be believed, it does look as though OSI really
are going to take the UK market seriously at last.

Documentation corner

CLEARer thoughts

The sad saga of the unclear CLEAR continues. Richard Elen writes: We’ve made a

few discoveries about the OSI BASIC’s CLEAR command since the last issue’s note.

After you've called CLEAR, you can redimension arrays without invoking a DD

ERROR. But if you so much as mention an array element after CLEAR but before re-

dimensioning, you will get the DD ERROR when you redimension, because calling '

an array element in an undimensioned array automatically dimensions it at the J

default value of 10. If you use, CLEAR, check that you don’t call any array variable

until you have redimensioned. q
Dave Caine adds: CLEAR seems not only to reset all variables, strings and arrays — W'

it also destroys any DEFs you may have set up (guess how I know!) and if you use it

within a GOSUB, the program won’t know where to RETURN to (presumably

o, ®

applies to FOR:NEXT also?). Where on earth could CLEAR be useful? I’m totally
baffled and my only suggestion is that it could be used to allow utility routines which
may be required to run either individually or chained or after a run of the main
program they’re working on, but permitting them to use non-unique array or
function names.

Any ideas, anyone?

NULL

NULL currently appears to be the main contenaer for the title of ‘most useless OSI
BASIC command’. NULL simply POKEs the null-counter (13,, in BASIC-in-ROM
systems) with the number after the NULL command (i.e. NULL 3). This allows delays
for interfacing with relatively slow devices, such as for the delay a bufferless printer
needs during its carriage-return cycle, The catch is that greater than 10 after NULL
generates an FC (function-call) error — although 255 is allowed! — which rather
limits things for people designing high-speed cassette interfaces and the like. In
practice, ignore NULL; use POKEs instead, they’re simpler!

INPUT and null entries

As most readers will have discovered, typing a CR as the sole response to an INPUT
statement in OSI’s BASIC results in an apparent crash — the ominous letters ‘OK’
appearing, to imply that all is not OK!

Users of disc systems will know that OS-65D and -65U have POKE locations that
disable this, allowing a CR response to be treated as a null string or zero value
instead. There is no equivalent ‘disable’ in BASIC-in-ROM. However, the INPUT
routine does look specifically for the CR (as a null at the beginning of the buffer),
and stores the current line-number where CONT can find it, before returning to the
warm-start routine. Thus, as UK101 users will know, but OSI users will not, CONT
after the apparent crash restarts execution at the beginning of (and not after) the
relevant INPUT statement, allowing the normal run of the program to be resumed
without any real interruption. Normal CONT rules apply: you can print the value of
any variable, LIST the program or whatever, but any change to the program itself will
result in a CN (continue not allowed) error and true program crash to be issued.

FOR:NEXT loops

OSI don't tell you, but there are shorthand ways of describing the NEXT in nested
FOR:NEXT loops that end together. NEXT X: NEXT Y: NEXT Z may be stated more
simply as NEXT X, Y, Z; or even as NEXT: NEXT: NEXT (since, for speed, BASIC does
not.check the variable name, but simply returns to the previous apparent FOR in the
nested set) — but, for reasons of legibility and proper documentation, this isn’t
recommended.

PRINT AT on C2 systems
A limited two-line PRINT AT is available on C2 systems, because the start-location
stored in 512, is not zero, as on C1s, but 64, 40,,.

On C2s, POKE 512,0 allows PRINTing on theline above the normal line: useful for
headings for normal lines of the PRINT; format. A CR (carriage return) forces the
value of 512 back to 64. Any value up to 127 is allowed — above that, the system
forces a CR on receipt of the first character, so this PRINT AT will not work on lines
below the normal line.

The same arguments apply to the C1: the line above cannot be reached because
the counter cannot take a negative number; and the lines below cannot be reached
because a CR is forced. The principle of POKEing 512 could be used within the
normal line, but it is simpler to use TAB statements! '

T>hanc| < u' logical operators

e recent issues of Aardvark’s catalogue h brief i

uses of AND, NOT o yar gue have a brief note on this and on the other
If > or <are used in the form (A > X) the function returns the logical value rath

than the arithmetic one: -1 if true (A s greater than X), 0 if false (A?s equal toor le:;

than X). This would be useful for certain types of game work, where the comparison

could force a GOSUB, through a form like ON (A > X) + 2 GOSUB 1000, 2000,

IF and NOT

As aresult of the logical comparisons of > and < above, the IF and NOT statements
can work without any =n sub-statement. For example:
IF A THEN. .. checks for a ‘not-false’ condition;

it is thus equivalent to IF A <> 0 THEN. ..
IF NOT A THEN. .. checks for a ‘not-true’ value, i.e. not -1;

it is thus equivalent to IF A <> -1 THEN. ..

The two functions are normally used for checking flags; butIFA...i
. . » ...isal f
checking if A has any non-zero value. grlag also useful for

AND and OR

There is the briefest of mentions in the OSI BASIC ‘manual’ that AND and OR can be
used for ‘bitwise’ arithmetical operations as well as logical comparisons of the type
IF (A AND B) =0 OR (A AND C) =1THEN.... But the two functions arrive at their
!ogncal true/false values by bitwise comparisons, which can be used arithmetically
instead. If you don’t know how these work, look it up in a book on assembly
language programming, such as Leventhal’s 6502 Assembly Language Programming
(Osborne/McGraw-Hill) — not Zaks’ Programming the 6502 (Sybex), since he
assumes tl:!at you already know! An, AND comparison returns a value only if the
relevant b_lts are set on both the comparator and the compared values —thus, as far
as BASIC is concerned, 64 AND 32 equals 0, while 24 AND 15 gives 8 (bit 3 is set in
each case h_ere, so the ‘result’is bit 3set, i.e. 23, or 8). ORing forces bits to be set; thus
32 OR 64 gives 96, but 96 OR 32 leaves 96 unchanged (since bit 5, 25, is already set).
'sl':te fuzctut)nt\)/yte ('1"0 lnot havE in this BIAE:C is EOR, exclusive OR, which clears bits if

» and sets bits if clear — this is available, th , i i
St ets bits if clear e, though, on the 19K Altair BASIC used in
. David Cannon comments that the Microsoft BASIC a pears to be very lax in
interpreting logical and relational operators. In principle tﬁere is a definite order of
priority in which these are done, as given in the manual; but even so, he says, it
:igms lto be essential to use copious brackets to ensure correct operation, For
mple:
IF THISDAY = WEEKDAY AND TIME = 9 THEN GOTO sleep? has to be written as:

The irr)ponant' point here is to watch the order of priorities when using OR and
ANP - ln_pri'naple at'least, they are evaluated after = operations, not before. So,
again in principle, David’s example should evaluate correctly without brackets; but

IF (THISDAY = WEEKDAY) AND (TIME = 9) THEN do whatever. ‘/‘]

¢ o

something A = | AND 1 may well result with A equalling I (by evaluating the = and
‘losing’ the AND by ending the implied LET), rather than returning either 1 or 0 if |
was odd or even respectively.

Double-spaced lines

Most people will know this by now, but in case you don’t: you can double-space
the lines of print output (i.e. insert a blank line between each printed line) by a
POKE 15,0 (set the apparent terminal width to zero).

LIST formats

Again, most people should know this, but it does cause some confusion.

LIST 100 lists line 100 only; prints a blank if line 100 doesn’t exist.

LIST -100 lists all lines up to and including line 100.

LIST 100-200 lists all lines from line 100 to line 200 inclusive.

LIST 100- lists all lines from line 100 to the end of the program.

LIST lists all lines.

During a SAVE, this allows you to list (and therefore save) only part of a program,
such as a set of DATA lines; or else save only the working program if you have any
utility programs, for example, using higher line numbers, which you will notwant to
save along with the working program.

: and , as delimiters in INPUT statements
Jack Pike set us a problem which so far we have not been able to solve — how to trick
BASIC into accepting commas and colons in INPUT without losing everything which
follows them (followed by that nasty message ‘EXTRA IGNORED’). This is easy in disc
BASIC, since the delimiters can be changed in RAM; but it’s not so easy in ROM.
Because the program is in ROM, we cannot change the delimiters to something
that we know is not going to be used in normal text (% or [, for example) —we have
to use the program as it stands, which almost certainly means writing a USR routine
to do much the same job. Studying the disassembly shows us wherethe : and, are in
the routine: the INPUT routine starts at A923, jumps over part of the READ routine,
and picks up these two delimiters (along with ”) at A98E onward. The : is stored in 5B,
the, stored in I'C. (This all assumes that the INPUT is for a string — this isset by aBIT
$5F, where the top bit is set high if a string input). The routine then goes through
three more subroutines, B0B4 (which | think assesses the length of the input string),
B3F3 and A7D5, before jumping back into a later part of the INPUT routine at A9B6.
it's going to be a long job to sort this one out, but it’s going to be extremely
important for the word-processor writers amongst us. Any takers?

Fast screen clear

I was taken to task by David Caine for my commenc that the Aardvark fast screen
clear described last issue scrolled the screen. It appears to, but in fact does not;
instead, as Dave pointed out, BASIC is tricked into thinking that the screen is string
storage space, and stores strings of spaces there. Thus all that is needed is to ensure
that the string-length (of spaces, or whatever) multiplied by the FOR:NEXT count is
just a little bigger than the screen memory — 1024 bytes on the C1, 2048 on the C2.
65*32, as given by the routine listed in the last issue, gives 2080; but 59* 35, as Dave
pointed out, gives an adequate 2065, and gets round the problem of fitting the
whole string of spaces and its ‘supports’ into one program line. C1 users can shorten

the FOR:NEXT loop, of course, to half that needed for the C2; and the routine
applies only to memory-mapped systems, not serial terminals as on the larger C2
and C3 systems. For these, however, Velvet Software (see Dealer Notes) pointed out
that PRINT SPC(0); SPC(0): PRINT scrolls the screen up faster than normal.

RND(X)
Ray Fox writes: Some BASICs use the command RANDOMIZE in conjunction with
RND. In OSI’s BASIC this is unnecessary as each time a program is RUN, RND(X) with
the same X generates the same sequence of numbers but starting with a different
number each time. If however the requirement is for the same sequence of random
numbers starting with the same number each (RUN) very helpful in debugging
programs) then a statement like Z = RND(-Y) must be inserted at the beginning of
the program. Z is a dummy variable. For the same Y the numbers will start with the
same number each RUN. Changing Y will change the starting pointin the sequence.
(Ed.) Someone sent me a superb piece on the machine-code aspect of RND, and
explained why it would not completely fill a C2’s screen — the repeat cycle for any
given number is only 1836 ‘random’ numbers! But | have, of course, lost the
notes. .. so would whoever it was write to me again, please!

Input buffer length

Another garbled piece of OSI documentation confused me and several others
about the length of the input buffer. On BASIC-in-ROM systems, POKEing 15 with a
value sets the terminal width to that value (the equivalent location is 23 in OS-65D
disc BASIC). But this does not alter the length of the input buffer: the maximum line
length as far as a typed line is concerned is always 72 characters. Thisis builtin to the
limitations of all Microsoft’s small BASICs (but not its big ones — the C3 CP/M
BASIC has a user-defined buffer), since it is an allocated hole, in this case, in the
6502’s all-important zero-page. (The Apple Integer BASIC is not by Microsoft, and
uses another rather larger area of memory instead).

Ray Fox writes on this point: As detailed in the first Newsletter, location 15, sets
the terminal width, for auto CR/LF. Values greater than 72 make no difference to the
maximum length of line that can be typed in BASIC; the length of 72 here
presumably being limited by the size of the input buffer. However, any value up to
255 inclusive does affect the maximum length of line that can be PRINTed to the
screen, and of course to a printer if fitted. Lines longer than 72 characters can of
course be PRINTed by PRINT statemerits separated by ‘;” or PRINTing the result of a
string ‘addition’.

An assortment of functions
Amongst a vast quantity of notes and comments from Matthew Soar were the
following two sets of BASIC functions. (If any other members have sets of useful
functions like these, please send them in).

Justification:

TAB(x) statements align numbers on the blank space or sign that precedes the left-
hand (highest) digit.

To align on the decimal point, use PRINT TAB(Y+FNP(N)); N — where FNP(N) is:
DEF FNP(X)= -LEN(STR$(INT(X))-(ABS(X)<1)

To align numbers on the right, use PRINT TAB(Y+FNR(N));N — where FNR(N) is:
DEF FNR(X) =1-LEN(STR$(X))

‘Bit-twiddling’ .

Nibble functions, where A is the value of the byte, and N the value of the relevant
nibble:

FNH(N)=INT(A/16) — reads high nibble (upper four bits)

FNL(N)=(A AND 15) — reads low nibble

FNA(N)=16*N+FNL(N) — sets upper nibble to N

FNB(N)=FNH(N)+N — sets lower nibble to N.

Nibble functions are useful for packing and unpacking decimal digits, two to a byte.
Bit functions: where N is the bit number of the required bit (0-7):

FNQ(N) =INT(A/2AN)-2*INT(A/2~ (N+1))

FNR(N) =A-FNQ(N)*2AN

FNS(N)=A+(1-FNQ(N))*2AN

FNT(N) =FNR(N)+FNS(N)-A ;
Respectively, these: read the Nth bit; clears bit N (sets Nth bit to zero); sets the Nth
bit to ‘one’; and toggles the Nth bit (clears if set, sets if clear).

Machine-code save in BASIC

Several people wrote in to comment on the reason why the Aardvark machine-code
save (published last issue) doesn’t work — it could be said to be a case of ‘spot the
deliberate mistake’? The error was that regardless of how wide the terminal width is
set, the forced CR eventually generated will screw up the save by adding an extra
apparent memory byte (as far as the subsequent load is concerned), throwing
everything up one byte further than it should be, and leaving a ‘gap’ repeating the
previous memory byte before the CR — guaranteed program crash! The solution, as
everyone pointed out, is to reset the other counter — the ‘characters since last CR’
counter, 14,, — between each hex pair, so no extraneous CR is ever forced. Thus:
delete the existing line 10 shown in the version printed in the last issue, and insert
145 POKE 14,0.

C1/Superboard and UK101

We now have a fair number of members with UK101 (because the ‘official’ user’s
group for 101s appears to have died); and well over half of our members have
Superboards or C1s. But at the moment we (in other words Tom Graves, Richard
Elen and George Chkiantz) have none of these machines — and this is necessarily
reflected in the applicability of some of our comments. | take the point made by G.
N. West that we ought to make every effort to ensure that information is accurate
before we print it, since that is the failing of OSI that we are complaining about. But
we cannot infer everything from a disassembly listing or acomparison on our C2s or
C3 — so would any members with C1/Superboards and/or (especially) 101s please
help us in the documentation work where it relates to their machines, by testing out
ideas as they arrive? Get in touch with us assoon as practicable if you’re interested in
this. .. many thanks!

List sorting
using ROM BASIC’s machine-code

I have juststumbled on a novel use of the BASIC ROMs to generate ordered lists and
save them on tape in a useful format for input to other programs. | am using it to
create source tapes in assembly language for a prototype two-pass Assembler, but it
could also be used to supply a list of cheques for a home-made accounts program,
or any other application where it is necessary or desirable to edit the data before
committing it to tape.

_ My problem was to be able to store quite a lot of information, in the correct order
(i.e. not the order | first think of it in!), and be able to edit and delete items at will
before finally saving the data on tape, with a suitable delay between each item to
a‘llow for processing by the recipient program. After considerable ‘boning up’ on
linked lists, trees and the like, it suddenly occurred to me that what | wanted was
exactly the facilities offered by the BASIC ROMs when typing in a program, editing
and saving it on tape.

A quick check confirmed that, so long as each statement began with a number
qnd followed this with a non-numeric character, BASIC took no notice of what the
line contained and happily stored it away, to be listed, altered, deleted, or whatever.
And of course, SAVE followed by LIST would put it all on tape in the right order, and |
could use the NULL command to precede each line with a sufficient number of nulls
to allow processing of the previous line (NULL 255 or POKE 13, 255 gives almost 20
seconds delay at standard cassette speed!).

By this time thoroughly pleased with myself, | made up a short data tape, loaded
my assembler, waited for the input prompt and played back the tape. BASIC isn’t
tricked that easily though; as soon as the listing began, the Monitor jumped out of
my program and loaded the tape as if it were a program, overwriting my assembler
in the process! A little experimenting and listening to the tape showed that there are
characters preceding the first line which are not printed on the screen, but which
obviously tell the monitor to expect a new program. Starting the tape at the
beginning of the second line of data was successful and | was rewarded by the sight
of a string of machine code instructions as the program decoded the assembly
language mnemonics.

_To get around this problem | now, having got together my data as dummy BASIC
lines, insert an extra line at the top of the list, such as 10 XXXX, type NULL 255 (or
whatev_er), SAVE, LIST, and as soon as the cursor returns after printing the X’s, start
recording. This results in a usable data tape beginning with a string of nulls then the
first line of data.

Using the data is quite easy. Arrange for the program to include, near the start, a
few lines such as:

110 POKE 515, 255
120 INPUT X$
130 POKE 515, 0

If the line nu’mber is not required, a simple search along the string via an IF
.MI'D$(X$,I,1)= " " will locate the first space after the line number (which BASIC puts
in if you forget to do it yourself) and the line number can be deleted by THEN X$ =

MID$(X$,14+1), but | keep and use the line number to identify the location of

assembly errors.

Make up the data tape, lead up your program and type RUN but not >RETURN<.
Play back the tape until you hear the beginning of the string of nulls then press
SRETURNS, so that the INPUT statement receives nulls as soon as it looks at the
cassette port. Failure to do this means a stream of meaningless characters (with alot
of 2’s) and, unless you’re lucky, a crashed program or even system. With these
precautions the method has so far been 100% reliable. By the way, the ‘OK’ at the
end of the listing can be used to good effect to terminate your program at the end of
the data by adding 140 IF X$="OK" THEN END to the listing given above.

One final tip: before typing NEW to erase the data you have just saved, save it
again but without the nulls. That way you can load it back quickly later oniif (orin my
case, when) you find that it still contains an error. Waiting for all those extra nulls
from the data tape is extremely tedious.

To sum up, the method enables the creation of data files of up to 7423 bytes (with
an 8K C1) with all the normal facilities of line editing normally enjoyed when
entering a BASIC program. Once mastered, the technique is quick and easy to use,
and varying the number of nulls means that the data can be saved and loaded at any
desired speed.

John Attwood

Designing new firmware for OSI systems

There is a sad little comment in the First Book of OSI that ‘our thanks and
compliments go to the hardware designers at OSI — and to almost no-one else in
Ohio’. OSI’s design and construction of its hardware are superb — but almost
everything else is a shambles. The failings of its documentation we are all only too
well aware of! The same goes for its own software —the ideas are there, butevenin
the ‘professional’ packages like DMS the all-important attention to detail simply is
not there. Where OSI have ‘bought-in’ other people’s work, from Microsoft, Digital
and others, the results are usually good — but the essential interfacing patches are
sometimes left with bizarre loopholes: the outdated Teletype-like ‘backspace’ in
BASIC-in-ROM, for example, or the stupid input/output error in OSI’s version of
CP/M (which tries to send parallel 1/0 through a serial port! — see this issue’s Disc
System Notes). Where OSI have written their own firmware the results are as patchy
as ever: it works, after a fashion, but never quite in the way you would expect! A
good instance is the keyboard routine for polled-keyboard systems: everything
seems normal until you release Shift-lock — and then it’s chaos! And who on earth
allowed the design of the software and firmware system for the BASIC-in-ROM
machines such that it can only load — but not save — its machine-code; whose
supposedly ‘better’ checksum load system turns out (in our experience) to be less
reliable than a straight load; and whose assembler will only dump the machine-
code that it generates in a checksum format that neither it nor the ROM monitor can
read? Are OSI’s software designers just utterly stupid, or more than a little insane?

Be that as it may, it was obvious from the start that as soon as we (as organisers of
the User Group) had made a reasonable start on patching up the wreckage of OSI’s
documentation, our next priority must be to replace the support firmware —
particularly for the BASIC-in-ROM machines, as disc systems are somewhat freer
with all their language software in RAM. We have already gone a long way with this,

and have most of the routines that we would like to use already mapped out and
assembled, but not yet linked into a whole. Before we commit ourselves to the
relative rigidity of EPROM, itis essential that we ask members’ opinions on what you
feel ought to be in a new standard monitor ROM for the BASIC-in-ROM machines.
David Cannon, for example suggested that we need: a fast screen clear; a resident
editor/resequencer; fool-proof cassette read/write (preferably with named files);
cassette machine-code dump, to match existing loader; hex-dec and dec-hex con-
versions; and longer hex program listings. Our own ideas are described below:
what are your ideas, your requirements?

The main difficulty in designing any monitor is that of packing as much as possible
into the limited amount of space available — the space being limited by cost as well
as by hardware restrictions. OSI took cost to be their main consideration, and
designed their firmware in 256-byte (1-page) modules, to fit combinations for as
many different machines as possible onto the one (at that time expensive) ROM
chip. This means a vast amount of repetition and redundancy: the C1 also has a
complete C2 monitor at the other end of the chip, the older serial chip has pages for
hard-disc support even though it’sused on a C2 (see Alan Garrett’s article elsewhere
in this issue), and both the reset and machine-code monitor pages have separate
screen clear routines (using different methods), neither of which can be called as
subroutines. On the assumption that no-one would ever really want to use the full
2K monitor space, OSI’s hardware designers even limited the accessible range on
the C2 to 3 pages (%K), and placed the ACIA chip to occupy the next page down,
right in the middle of the 2K range of the monitor chip.

The net result is that on C1/Superboard machines the whole 2K is available,
whereas only 13,K is available on C2s. However, the ‘extra’ page on the C1is needed
for the keyboard-complement subroutines (because the keyboard values are
inverted relative to the previous designs) and for the disc bootstrap (because
C1/Superboards still use the BASIC-in-ROM under the Pico-DOS system, and thus
will still need extended monitor facilities in ROM). A sensible use of resources,and
a ten-minute hardware mod on the C2, frees 13,K on each type of machine to do
everything else we need. Given that we can remove much of the duplication with
judicious use of subroutines, we arestill tightly limited by what we have to doin that
space — and 1%,K is not all that much of a space in 6502 code.

If possible, we also have to maintain compatibility with all the existing software.
That’s not as easy as it sounds: a brief study of the conflicting requirements of ROM
BASIC, monitor, EXMON and assembler will point out some of the difficulties. For a
start, only BASIC recognises any kind of back-space, and BASIC’s keyboard buffer is
limited to 72 characters stored at 0073,,-5A, while the assembler’s buffer starts at
0080, and varies in length because of a packing system used for repeat-characters.
And so on...

We could, of course, bypass all this by replacing the lot...! Which would be
rather expensive, and almost certainly a breach of copyright unless we can get it
covered by the terms of OSI’s licence. But there are a number of arguments in
favour of this as a long-term exercise: replacing just the first chip, from A000-A7FF,
would give us access not only to the ‘editor’ and most of the input/output calls from
BASIC, but also all the command and look-up tables — which would allow us to
define a new version of BASIC, perhaps even a user-definable one like Xtal BASIC
for the Nascom and Sharp. This is worth thinking about; but at the moment it’s
definitely a long-term proposition.

Which brings us back to the monitor, and to the realisation that, for the moment,

everything that we want has to be done within the one chip, and within not more
than 13, K. What we have to do, if we want to retain compatability with the existing
system (but see the OEM Notes elsewhere this issue) is the following:

a) provide the Reset entry, leading to Cold and Warm starts to BASIC, to the
Monitor, and to the Disc bootstrap on the C1version (residing in the ‘extra’ page
FC);

b) provide the five BASIC support vectors and routines (character-in, character-
out, set SAVE, set LOAD, ctrl-C check), and the look-up tables for the video routine
support;

c) provide a keyboard routine to support the character-in routine;

d) provide some machine-code facilities for the Monitor statement to jump to.

As we see it, a) must stay pretty much as it is — it need not necessarily be in the
same place, although the former start location of FF00 must still be able to callit, to
maintain compatability with the existing ROM. But everything else could —and, we
feel, should — be extended.

Again, there are trade-offs: people who want big extensions to BASIC, like
machine-code versions of trace, renumber, line-delete, search and the like, can
only have them at the expense of expansions in other directions. Our feelings at the
moment are that many of the BASIC utilities — particularly renumberand search —
are easy to implement in BASIC, but not at all easy and/or greedy in memory in
machine-code; a number of BASIC features would also demand a parserto decode
the commands, since the BASIC-in-ROM parser is inaccessible, and that too is
greedy on memory. We would thus prefer to limit the BASIC expansions to thase
which are easily implemented without a parser, and to devote the remainder of the
space to things which are either infuriatingly slow in BASIC, or which can’t be done
atallin BASIC — namely an editor, and a proper keyboard routine and extensions to
the machine-code monitor. .

One type of editor which already works on OSI kit is the Sirius Cybernetics type
with twin cursors — this has some limitations, but it does run all the time that
keyboard input is required, without needing to be called. We have, of course, re-
written the keyboard routine —it now does do what you expect! —and while, atthe
moment, it is slightly larger than the existing routine, a little algorithm-juggling
should trim it down to the requisite size, as well as freeing its delay-routine as a
subroutine for use in other programs. Other routines — like screen-clear! — have
also been re-written as subroutines for use elsewhere. On the machine-codeside,
my own experience of a Nascom 1 (which had an un-endearing habit of scrambling
memory on reset, but which had superb firmware in the T2 and T4 monitors) has
given me a pretty clear idea of what a proper machine-code monitor shéuld have.
I’ve thus written a proper modify routine that allows input of both hexand ASCII; a
tabular memory display dump; hex arith routines, including relative jump;
breakpoint handler; intelligent block move; and some other routines, including (of
course) save and load. Richard Elen and George Chkiantz have written some other
extensions, like a tape-header routine for named tape files. On the BASIC-support
side, we are undoubtedly going to vector all the support routines through RAM —
which the C1/Superboard does at the moment, but which the C2does not. Thisisto
allow user-defined 1/0 — which at the moment, as | know to my cost, is almast
impossible on the C2 series without re-writing almost the whole of BASIC! | have
also written an easily implemented BASIC-trace (switched on by a single POKE) and
am currently struggling with the one other BASIC extension | feel is essential but

impossible to implement in BASIC, namely block-delete of program lines. Other
items under consideration include ways of leaving open ‘holes’ for expanding the
monitor, to append proper ‘extended monitor’ facilities like a disassembler and a
disassembling machine-code trace; and also various experiments with a real-time
clock; and. ..

But anyway, what we need to know, if this is to be the Group’s monitor rather than
our own indulgence, is a clear idea of what members want of a ROM support
monitor. What we need to know is what you want, what you are working on or
interested in along these lines. Would you let us have your ideas or comments as
soon as possible — we’d like to have something to soothe some of our members’
firmware headaches by the time the next issue comes round!

Tom Graves

The range of OSI monitors

C2 and C3 range

For those who possess a C2 or C3 machine you will most often finda SYNMON V1.0
monitor on your CPU board (I’ve never seen any other version, or anything else!).
However, OSI claim to produce two versions of this monitor ROM, one for video
systems (C2) and one for C3 and other serial systems. Now this may well be so, but
there are no external markings on any of our SYNMON V1.0’s to show this! Anyway,
to continue:

Page Contents Run-time address
1 Monitor: 540 video board, ASCII keyboard FExx
2 Reset support (‘C/W/M’): 540 board and ASCII keyboard FFxx
3 Polled keyboard routine (542 keyboard) FDxx
4 Monitor: 540 board with 542 polled keyboard FExx
5 Reset support (‘C/W/M’): 540 board and 542 keyboard FFxx
6 CD74 hard-disc bootstrap FDxx
7 Monitor: serial systems FExx
8 Reset support (‘H/D/M’): disc systems FFxx

If you look at a 502 CPU board (C2 series) you will see a patch socket with 3 links,
from pins 1, 2, 3 to pins 12, 11, 10. These call up pages 3, 4 and 5 respectively. So far
fairly straightforward. The monitor ROM is actually addressed by separately
decoding the high address lines of addresses FDxx, FExx, FFxx, and then converting
them back to a binary address. (This is why.you have a 2K monitor but can only ‘see’ 3
pages of it).

On a 505 (not Rev. B) board out of a.-C2-4P MF, you will find a similar patch socket,
with links from pins 1, 2, 3 to pins 12, 11, 7 (note the difference). Hence a C2-4P MF
will display ‘H/D/M’ on power, reset or break, but has the same keyboard and
monitor routines.

Ona505 (not Rev. B) board out of a C2-OEM machine you will find the same patch
socket but with only two links, from pins 2, 3 to pins 7 and 8. This brings out an
‘H/D/M’ message and uses a serial monitor.

At this point a very interesting point comes to light, namely that the C2-4P MF’s
505 board does not produce the ‘H/D/M’ message in the same way as on the C2-

OEM'’s 505 board, which drives a serial video system rather than a built-in 540 video -

board. This is fairly obvious and directly leads to the conclusion that there are two
different reset support pages producing ‘H/D/M’ messages; and because the
boards in question have the same page (page 8) for the reset support code linked in,
then there must be two different ROMs: one basically intended for video systems in
which pages 1, 2, 6, 7 are not usually used; and one for serial systems which
apparently usually use only pages 6, 7, 8 — and 6 (the hard-disc bootstrap) only on
C3s. On a 510 board from a C3 machine a similar patch socket exists with pages 6,7, 8
of the monitor ROM selected: this displays the ‘H/D/M’ message on a serial video
system.

In answer to the question ‘What is in my monitor ROM?’, we have come a fair way
towards an answer. The definitive answer will only come when someone with alittle
time to spare manages to do a disassembly of the whole of the 2K monitor ROM, for
both a 540 board video system and a serial-based system. Which leads to a further
question of ‘How can this be done?’ On a ROM BASIC video system (i.e. a C2-4P) a
machine-code disassembler might be used, via the monitor, to disassemble other
monitor ROMs, perhaps placed in one of the BASIC-ROM sockets —a suggestion |
leave for those who wish to try this. (I can provide a serial monitor ROM and a
monitor ROM from a video system for a day or two if anyone wants to try — contact
me at Mutek). ’

One final point: the two monitor ROMs, both called SYNMON V1.0 —one froma
video system, the other from a serial system — must, by my argument, be different
inside; yet outside they are the same device, with the same name and pack. Asever
with OSI, confusing, isn’t it! Alan Garrett

C1/Superboard

(Added afterwards by your editor!) The monitor ROM used on the C1/Superboard
series does actually have a different name (1) and contains what appears to be both a
C1 and C2 monitor — which may resolve Alan’s problem, The C1’s monitor set-up,
as run, contains a disc-bootstrap and keyboard-complement routines at FCxx, and
then much the same as the C2’s monitor: keyboard routine at FDxx, machine-code
‘monitor’ at FExx, and reset support at FFxx. The catch is that it is not the same as the
C2’s monitor: there are some important differences. On reset, the C1 version loads
in a table of vectors from FEF0 to FEF9, for the BASIC support routines, and stores
them at 0278, upwards; these vectors are later called via ‘{MP-indirect’ (6C)
opcodes when BASIC requires the monitor’s support. The C2 version uses ‘JMP-
direct’ (4C) opcodes for these vectors, making user-defined input-output almost
impossible, and uses the C1 version’s vector-table space for a vague attempt at a
‘GETKEY’ routine. (Both versions, incidentally, have redundant Reset, IRQ and NMI
vectors at the top of the FExx page, apparently in case the page is switched for use as
page FFxx —though the monitor would not work at all under those circumstances!).
Other major differences occur in the keyboard-polling routine in page FDxx: the C2
version does a straight STA/LDX (or /LDX) sequence to look at the keyboard
switches, whilst the C1 version has to call a set of complementing routines, stored in
the ‘disc bootstrap’ page at the upper end of FCxx, because the keyboard switches
invert the key values as defined by the earlier 540-board system. Serial I/0 through
the ACIA also has to be dealt with by separate routines in the ‘disc-bootstrap’
rather than within BASIC, because BASIC expects either a UART at FBxx or an ACIA
at FCxx, notan ACIA at FOxx! The bootstrap routines occupy the same location as the
ACIA that BASIC expects, of course. . . which is why everything had to be re-written

to by-pass BASIC. But exactly why the C1’s monitor should also have a C2 version
within it, when the C2 is already served by the other monitor, is something of a
minor mystery — perhaps they just needed to fill the space with something. There
are also apparently two different C1 monitors, with the same contents, but different
chip-types — the board has links to support two different types of ROM.

Allin all, the situation with the monitors is, as usual, a tangled mess. As explained
elsewhere, we are currently trying to re-write the monitors for the smalier systems
— any comments or ideas to help us in that direction would be most welcome!

Letter from America

User Group organiser Richard Elen was over in California on business recently, and
was able to grab a little time off to talk to people about the OSI scene over there. This
is his report. ..

The end of May saw the 1980 National Computer Conference and exhibition at the
Anaheim Convention Center. The show was exceptionally large, with over nine
halls in the Center itself and two floors — housing the Personal Computer Festival —
in the nearby Disneyland Hotel.

While at the Show, | visited the OSI stand, tucked away in a corner of one of the
main halls. On show was, as one might expect, a C7, in its new-style case; a C4MF,
with an excellent set of business programs running on it; and a C2-8P with a whole
battery of add-ons, including a music program running viathe D/A, a home security
system, light and appliance controllers, the works. A Votrax voice synth card told
you what was going on and the system was ably demonstrated by one of OSI’s
engineers. A pair of C3s were also on hand, running a number of powerful business
systems.

I had a useful discussion with James Pike, OSI’s New Business co-ordinator, about
the company’s attitude to the UK market, and I’'m pleased to say they seem to be
most interested in looking after us lot over here. Lines of communication between
the UK User Group and OSI are now well and truly open, and we can hope to be
kept informed with useful data. '

I also visited a couple of Californian dealers/distributors, and got a chance to see
some of the new developments, notably the new 540 rev.B7 colour video card, now
being fitted to the C4. You can retrofit one to a C2, of course, and at least two people
in the UK have recently completed PAL colour conversions so we’ll soon be able to
have access to all 16 colours, alphanumerics and graphics, foreground and back-
ground colour. The 540 colour card allows each screen position to be set to a fore-
ground and background colour: a simple command changes the entire screen
background to a chosen colour. For more details on this and other aspects of the C4
you should try to get a copy of the current issue of onComputing, McGraw-Hill’s
new ‘beginners’ magazine. A multi-page colour review therein gives a good
appraisal of the new system. Shortly we hope to present a review of the machine for
members in the Newsletter; as many of the facilities utilise modifications to existing
boards, C2 and C3 owners should also benefit, as new boards can be obtained with
the new facilities, hopefully with some kind of trade-in deal. New lines of
communication were also opened up with regard to getting better facilities from

continues after Group Notes and Dealer Notes

User Group Notes

Join the club?

We know that several members would like to see the Group emphasising the ‘club’
aspect more — arranging local meetings and the like. The main problem, as far as we
are concerned, is that we have more than enough of a job already! Clubs are
certainly a good idea, but we realise that, because we’re operating on a somewhat
remote national scale, we are not really up to organising things on the local scale
that clubs really need.

So we have had a couple of members asking us if we would supply them with alist
of other members in their locality. But this immediately raises an ethical problem:
that we should not hand out members’ names and addresses without their
permission beforehand — to do so would be a breach of privacy. So we will not be
issuing your address to anyone who asks for it! A much better solution, that should
be acceptable all round, would be if we publish the names and the like of any
members who would like to organise club activities in their local area, leaving other
members to contact them direct. So if anyone would like to organise something in
their locality, let us know fairly soon, so that we can assemble a ‘Contacts’ list for the
next issue.

Disassembly and development

Serious programming work — in which I include serious games programming! —
needs practical tools, and we do have access to most of the tools and information
here if members need it. But one of the main tools, the disassembler, presents with
another ethical problem: that of copyright. Computer copyright law is a shambles at
the moment, but even so, it is clear that both Microsoft and OSI would get more
than a little upset if we published the source-code of their major works. And a
disassembly of ROM-BASIC, for example, occupies the best part of 5000 lines of
code, or well over 100 pages of printer listing — not a minor item. For reference
purposes only we do hold disassemblies of ROM-BASIC, EXMON, assembler
(cassette and disc versions) and various ROM monitors, and we intend to extend this
to cover the other major software like disc BASIC and OS-65D and -65U. We can
handle specific enquiries, but be warned — we’re only doing this in our minimal
amount of ‘spare’ time, so don’t expect a speedy response!

Planning cards

In last issue’s Notes | mentioned the idea of producing write-on/wipe-off planning
cards, to cover a variety of needs. Several people wrote in to say they were
interested, so these are now being prepared, to be printed just after this issue goes
to press. You'll find a list/order form as a loose insert in this issue; the price of 50p
each, to members only, is as low as we dare make it — you'll also find them in the
computer shops later on, and atarather higher price! The designs we’ve done so far
would seem to cover most general needs — video planning, opcode lists, hex-dec
conversions, program planning — but no doubt there will be others. If you can think
of other card designs that would help, let us know. And we’ll also be issuing some of
the designs as pads, for more permanent records.

Small ads?

At the moment we have no advertising, but since these Notes and the Dealer Notes
have moved to this pull-out-able section, advertising becomes practicable. You'll
see a comment in the Dealer Notes about the general advertising cost — but would

members like a ‘small ads’ section, to advertise their odds and sods? A realistic price,
given our production costs, would be about 2p per word, with a minimum charge of
£1.00. This, with the dealers’ advertising, would help pay for a bigger issue — your
comments, please?

...and a small ad!

User group organiser Richard Elen wants to sell his Elekterminal-based serial
terminal. Complete with George Risk ASCIl keyboard and Thompson-CSF video
driver to drive either a video monitor or TV, it’s currently used to drive Richard’s C2
system; but he’s replaced the terminal with the 540/542 standard C2 video-and-
keyboard combination. Richard would like around £100 for it; more details from
him at the Group’s London atldress, 12 Bennerley Road, London SW11 6DS.

Dealer Notes

We’re glad to note an increase in the number of dealers for both OSI hardware and
OSl-compatible software. We’ve listed below all those new dealers (new to us, at
least) whose addresses we’ve found in the magazines and the like; where we’ve
been able to get in touch with them, we’ve also included some details of what they
are doing. As before, they are in no particular order!

Mighty Micro, 33 Cardiff Road, Watford, Herts. Tel: (0923) 38923.
Mail order section: P.O. Box 17, Basingstoke, Hants. Tel: (0256) 56417.

A consortium formed by Watford Electronics and Videotime Products (and possibly
Lotus Sound?) to handle the computing side of their business. Deal mainly in
Superboards, but also sell other OSI kit such as the C4 (currently in stock!). Also
peripherals like the SuperPrint 800 (alias Base-2) printer and Softy firmware
development kit. Probably the largest volume seller of OSI — low prices offered as a
result! ‘

Simple Software Ltd, 15 Havelock Road, Brighton, Sussex BN1 6GL.
Brighton (0273) 504879.

Best known for their Microcase ABS cases for Superboard, Compukit and others;
but actually in business to sell software! Limited range of (low-priced) software is
currently being expanded. (They sent us a sample tape, which we’ll review next
issue).

Velvet Software, 26 Colesbourne Close, Worcester WR3 9XF. Tel: 056 885 453.

Range of tape software for Superboard/C1and UK101 (Startrek to be reviewed next
issue). Also set of peripheral interface kits for those systems, for reed relays, parallel
ports and programmable sound generator — kit with all facilities is under £50.
(Would any member using this unit care to send us areview? —itsounds interesting
and well priced).

J.M. Electronics, P.O. Box 71, Norwich NR6 7JE. Tel: (0603) 412222.

Tape software, particularly for UK101, mostly games and priced from around £3to *

£7. Software publisher — keen to publish any good software for UK101 and
C1/Superboard (also Apple). Also disc system under development for UK101 —
should be ready by the time this issue goes out. S.A.E. appreciated with enquiries!

Philbrand Associates, Great Oak House, 2 Albany Close, Esher, Surrey KT10 9JR.
Tel: (0372) 62072. .

Large systems for business use — C8-P upwards. Specialises in word-processing
systems based on C3 and Wordstar software.

Millbank Computers, East Lane, Kingston upon Thames, Surrey.
Tel: 01-549 7262.

Specialist in business systems, using C8-P upwards. (Parent of Philbrand Associates?)

Beaver Systems, Norlett House, Dormer Road, Thame, Oxon OX9 3UC.
Tel: Thame (084 421) 5020.

Advertise full ‘personal’ OSI range — Superboard to C4; also games software for OSI
range, and for UK101 and TRS-80. (No further details as yet).

Easicomp, 57 Parana Court, Sprowston, Norwich.
Tel: (0603) 407923, also (0508) 46484,

Superboard and own-cased Superboard in particular; also software for Superboard,
and Pet, Nascom, Research Machines. Commissions and publishes software. (No
further details as yet).

New systems

It’s nice to see that we haven’t had a repeat of the Superboard saga with the new C4
— it arrived less than a couple of months after it was first advertised, and several
buyers already have them in this country. There still seems to be a little trouble with
the PAL colour conversions (dealers would definitely like members with colour
implementations for any OSI kit to contact them!), gut apart from that the new
machine is very neat indeed, and well worth the small extra above the old C2 price. |
haven’t been able to play with one in detail; but the amount of built-in 170 ports
and the like will make all sorts of specialist interfacing very easy, and the disc system
works out at the same price as an Apple without adisc. All right, the Apple has better
colour handling and finer graphics (although a dot-addressable graphics card for
the OSI bus is on the way, I’'m told) — but have you seen the price Apple charge fora
single RS-232 port?

There is another version of the Superboard (Superboard 111?) now on release in
the States, but we’ve no details as yet. And also on the way, in the bigger league, are
two new hard-disc systems, the C2-D and C3-D. These are essentially the same as the
existing C2-OEM and C3-OEM (i.e. 48K RAM, twin 8" discs, and 6502 or triple
processor board respectively), but replacing one of the floppy drives with a built-in
10 Megabyte hard-disc (Shugart, | think). Pricing is interesting: it’s likely to be
around a thousand quid cheaper than its nearest equivalent, Cromemco’s 72-H.

Wheeling and dealing?

Various things have been going on on the dealer front, in relation to the UK dealers’

somewhat tortuous relationship with OSI, and between the UK dealers themselves.
The relationship between OSI and the UK dealers is ‘estranged’ — as far as | can

work it out, no-one — strictly speaking — is an ‘official dealer’. OSI’s official

European distributors are ADHOC; but their original terms for UK dealers (trade

terms in the UK, before shipment or Customs duties, were slightly higher than

American domestic retail prices), none of the original UK dealers are willing to buy
from them, although some of the newer dealers are apparently doing so. (If you
thought their prices were high, look at what ADHOC are getting away with in France
and Germany: French prices are nearly twice ours, and German ones are almost
three times — so it’s no wonder that one dealer said that a French customer flew
over especially just to buy a Superboard!) ADHOC are still trying to pump lifeinto a
promised maintenance service company; but they’ve withdrawn their European
manager from London when last we heard, so it’s unlikely that much will come of it.
In case you’re wondering where the UK dealers get their systems from, it seems that
they have two options: some, like Mighty Micro and Millbank, have managed to
bypass ADHOC's ‘official distributorship’, and seem to be buying direct from OSI;
while others, like CTS and Mutek, buy from the American wholesale market, and
apparently at much the same price as buying direct from OSI, with immediate
availability too.

The other matter in hand is a certain amount of wheeling and dealing between
the UK dealers — with the intent of helping everyone, dealers and customers. A
kind of ‘dealers’ convention’ held in May at the instigation of Bill Unsworth of U-
Microcomputers set up an agreement whereby dealers are sharing technical notes
and, to a certain extent, software; they’re also covering each other for emergencies
when one dealer urgently needs a board, for example. | gather there was also a
certain amount of ‘price-fixing’, but on the whole these have been rounded down
rather than up! But with the removal of any real threat of a price-war between
dealers, they can settle down with more certainty to develop specialities of their
own, and, we would hope, to offer a better and more local service network. It’ll be
interesting to see how this all develops.

The User Group has an important part to play in all this, incidentally. The dealers
recognise that OSI’s documentation is so poor that a complete rewrite is necessary,
and have asked us to co-ordinate the collection of any notes with a view to
producing proper documentation. At the moment they’re particularly keen on
producing notes for DMS and OS-65U on the larger systems — so we’d appreciate
any notes and comments on these from any members using them.

Advertising

At present there is no advertising in the Newsletter — and | have no doubt that many
members would prefer to keep it that way. But the increasing size of the Newsletter
— which | presume, again, that most members would prefer — is sending our pro-
duction cost for each issue much higher, and only just within the Group’s current
budget. We have moved the Group Notes and Dealer Notes to the middle of the
Newsletter, as a pull-out section: and if we are to have any advertising, that is where
it should be, since it can then be thrown away when itis no longer relevant. And we
now have enough of a readership to make specialist advertising worth while. So |
would like to know from members whether they feel that advertising, in a pull-out

fees!); and whether members and/or dealers would be interested in advertisin
their wares in the Newsletter. Assuming that artwork was supplied, a rate of £40 per
page (and pro rata for half and quarter pages) would be realistic for us, and we hope
for advertisers as well. (You could see it as subsidising our good works, perhaps. . .).
Your comments, please — and any takers?

section, would be acceptable (to prevent us having to push up our membership !

]

OSl for UK dealers, and with the major UK dealers now working together more we
should soon see some dramatic developments in terms of availability and backup.
Our dealers in the UK have really pulled their fingers out and are doing a great job of
handling the equipment: soon it should be even better.

I also picked up copies of some new publications related to OSI gear. TIS, well
known for their PET literature, have produced a book called The C1 Workbook. This
is a great guide for beginners and explains not only BASIC, but all the vagaries of the
C1/Superboard. New from a Californian publisher called Elcomp is The First Book of
OSl, Vol.1. This book, culled primarily from OSI’s technical news-sheets, enquiries
and information from Aardvark Technical Services (who published what must be an
earlier version of this — Ed.), lays out a lot of useful information on the machines.
The first volume covers mainly C7 and C2 information, including discs. Although
there is a lot of information there, and it is well indexed, there is a certain
unpredictable quality about the articles: they are presented in no real order, but
there are some real gems among them. One example is a simple BASIC program
which POKEs machine code into the top of memory to clear up the bug in OSI’s
BASIC-in-ROM string-space housecleaning routine, making string usage a little less
annoying. I've tested it, and it works; we’ll print it for you shortly. Also given is the
hardware mod to give the C1/Superboard a 54 character by 32 line display. Some
UK dealers are already offering this mod; if you fancy doing it yourself, the
information is in the Elcomp book. Two volumes are to follow: Volume 2 details the
‘higher-level’ DOS systems, OS-65U et al., and the WP-2 word processor; and
Volume 3 will cover interfacing and how to hang your own things on the end of OSI
machines and boards.

Another useful arrival is the publication of three Howard Sams service manuals:
one for the C1 (which also serves the Superboard and includes discs); one for the C4
(which will also cover the C2, and, once again, the minifloppy systems); and one for
the C3. The latter book also includes data on the 470 Disc-Controller board, so if any
of you have been thinking of upgrading a C2 with the 470 board, to retain the
BASIC-in-ROM with disc expansion (it’s faster than OSI’s disc BASIC), you’ll need it.
The three manuals are all reasonably priced and give clear, colour-coded diagrams
and photos of the board layouts, plus full servicing and testing details. A must if
you’re into the hardware side of your machine.

All these publications are currently being ordered from the US and will hopefully
be made available to members in the near future.

(Ed. — I hate to sound cynical, but we seem to have heard a lot of those promises
from OSI before: better service, better deal for the UK market, freer supply of
information, and so on. OSI aren’t exactly an open company — most members
probably don’t know that it is OSI’s company policy to refuse to answer phonecalls
from anyone other than a very select group of dealers. So I'll only believe those
promises when we start to see hard results. . . and if anything really does happenin
the next three months, we’ll let you know in the next issue!)

BASIC program interpretation

Courtesy of Aardvark Technical Services

(The description that follows is derived from Aardvark’s BASIC Notes; it applies in
particular to OSI’s ROM BASIC Version 1.0 Revision 3.2 — the ‘BASIC-in-ROM —
but also in general to Microsoft’s 6502-series BASICs. Addresses and values given are
those for the BASIC-in-ROM, and are in hexadecimal unless otherwise stated).

A good place to start exploring is the warmstart entry at A274. BASIC can also be
warmstarted by a jump to 0000 — where the system puts 4C/74/A2 during the
coldstart sequence. In warmstart, BASIC is looking at the keyboard, waiting for
immediate-mode commands or BASIC instructions with line numbers to be
entered.

Clear ctel-0|

Flas.

1
Print “ok"

F
Flowcharts of warmstart (asc2)
(left) and main BASIC

execution loop (right)

6
immediate (Asré)
mode
Frw“ D_w?
wormskart

call
BC

ko
bosic execukion I >A5F6
foop.

¢| e

See the warmstart flowcHKart. BASIC first clears the ctrl-O flag (LSR $64 clears the
flag — the top bit of 64) to allow printing; invokes the message printer at A8C3 viaan
indirect call through 0003 to print the ‘OK’ message —the A and Y registers hold the
low and high bytes of the message’s address, and the message ends with a null. (The
‘OK’ itself is stored at A792, 3). Now the ‘fill the input buffer’ routine is called. This
routine (at A357) inputs from either keyboard or ACIA, via the vector at FFEB, and
depending on whether the top bit of the LOAD flag (0203) is clear or set respec-
tively. The ‘fill buffer routine’ keeps a count of the characters in the X register, stores
the characters in the input buffer (73-5A in the zero-page — hence the limit of 72,,
characters on input), handles the very limited ‘editing’ functions of false-backspace,
and line delete (with a); checks for the ‘no-print’ code ctrl-O; and ends the input on
a CR, jumping to A866. This places a null at the end of the buffer instead of a CR, and
then runs oninto the CR/LF routine at A86C, which also ‘hangs around’ for any extra
nulls that the system finds in 0D. (Nulls are put in the output stream after CR/LF, if
needed for a slow device, by placing the number of nulls in 0D. This normally
defaults to 10,,, and is changed by a POKE 13, n or a NULL n command (the latter
vying with CLEAR for OSI’s most idiotic BASIC command, since it doesn’tdo what is
expected of it at all — see Documentation Corner in this issue!).

Study the flowchart for the A357 routine for how this works. The same routine is
also called by the INPUT routine.

There exists a vital routine callable at 00BC (the code for which is copied during
coldstart from BCEE-BD05 in ROM) that puts the next character in the current BASIC
line being worked on into the accumulator. The routine is sometimes referred to as
CHRGET; the current character may be pulled into the accumulator by calling 00C2
rather than 00BC, as CHRGOT. The BC routine jumps overand ignores any spaces,
and also sets the carry flag if the character being pascad is not numeric, for the
information of the routine that called this subroutine. The address of the current
character is in C3, C4 — the address portion of an LDA instruction. All the main
routines use the BC subroutine to find out what’s next; (C3) is constantly being
changed by the users of the subroutine, in addition to being incremented by the BC
version of the subroutine each time it is called.

During the warmstart sequence, the BC routine is used to work through the ASCII
in the input buffer as it is tokenised. (C3) is set by the call to A866 to point to the input

- buffer. If the first character is numeric, the buffer must contain a numbered line of

BASIC source code, so the routine jumps to A295 to do the ‘tokenise and store in
BASIC workspace, updating necessary pointers’ job on the input buffer. If the first
character is not numeric, the statement is assumed to be immediate-mode, A3A6 is
called to tokenise the buffer, leaving the tokenised line in the buffer; the routine
then jumps out of the warm-start loop to A5F6, the main entry to the ‘execute BASIC
statements’ loop.

At A5F6, the ‘execute BASIC statements’ loop calls the BC subroutine to check if
the next character in the current line is a null (i.e. in immediate mode, just a CR in
the buffer). If it’s not a null, it must be a BASIC command, so the loop then jumps
back to its beginning at A5C2. When a program is RUN (from the beginning), the
command RUN is executed as a BASIC statement, calling the RUN routine at A477.
This a) points (C3) to the contents of the (79) pair, pointing to the beginning of
BASIC workspace (set to 0307 by the cold-start routine); b) resets the string pointer
pair (81) to the top of memory as recorded in the (85) pair; c) resets the array pointer
to the end of BASIC program space as pointed to by (7B) — so all array, variable and

The ‘input and fill
buffer’ routine
(A357)

string pointers are reset to their start positions; d) the stack pointer is reset to FC,
which on return from that subroutine 'means that it is pointing at 07fE; e) a 00 is
stored in 008C and 0067 (we’re not yetsure why); and f) a$68 is storeq in 0065 (again,
we’re not sure why, but it probably has something to do with 568.be|ng the opcode
for PLA, pull the accumulator value from the stack). On returning from the: RUN
routine, the program jumps to A5C2, the start of the ‘do the next BASIC line or
statement’ loop. See the ‘main BASIC execution loop’ flowc!nart.)
Starting at A5C2, the program first does a ctrl-C check, calling the subroutine at
A629; if ctrl-C is found, execution stops, printing ‘BREAK IN LINE (contents of the
(87) pair)’ before returning to the warm-start loop. If ctrl-C is not pr.essgd, the
program checks to see if the next character of the line is a null (the beginning of a

new BASIC line). Ifitisn’t,and if itisn’ta‘:" to indicate an additional statement in this
line, the program jumps to the syntax-error printer, and returns to the warm-start
loop. If the next character is a null, the high byte of the pointer that follows it will
have a null also if the line just executed is the last in the program. If this is found, the
program returns to warmstart. Otherwise, there must be another line of BASIC: so
the program picks up the line number and stores this in the (87) pair, and then
increments the (C3) pointer past the ‘next-line-is-at’ and line-number pairs to point
at the first program character of the BASIC line. (If the last character looked at was a
‘:” rather than a null, the program would have jumped to this point). The next
sequential instruction in ROM is at A5FC, which is where we came in with the
immediate-mode statement RUN.

As mentioned earlier, A5FC calls the BC subroutine to check for a null; if not a
null, it calls the subroutine at A5FF to do the actual work of executing the BASIC
statement that it finds in the line, before returning to the start of the loop at A5C2.

ASFF calls the BC subroutine and checks to see if the first character is greater than
804. If not, it is not a normal ‘token’ for a BASIC command, and it is thus assumed to
be an implied LET command. In this case, the token for LET is inserted, to call the LET
subroutine at A7B9. This then calls AD0B, a very important subroutine that finds the
name of the variable to be assigned by the LET, finds its address in the variables
storage space, puts that address in the (95) pair, and also leaves the address in the A
and Y registers. In this case the LET routine at A7B9 then stores the variable’s address
in the (97) pair, and checks for an ‘=" (using the BC routine, of course, to look for the
next character); if it doesn’t find one, the program jumps out to the syntax-error
routine. If the ‘=" is found, the important subroutine AAC7T — the ‘evaluate an
expression’ routine — is called, which leaves the value from the expression in the
four-byte floating-point accumulator 00AC-AF. The LET routine returns by way of a
JMP to B774, the ‘store the floating-point accumulator at the address pointed to by
(97)" routine. Since the LET routine was itself called as a subroutine, the sequence
ends with a return to the top of the ‘execute BASIC statement’ loop at A5FC, which
restarts the sequence again at the beginning (at A5C2) with the ctrl-C check.

If A5FF does find that the first character is greater than 80,4, the character is a
token for a BASIC command — presumably other than LET! The program then
checks that the token is an ‘initial’ one — a command rather than a function or an
operator — by checking that the value of the token is less than 9C,; (the token for
TAB(, the first of the ‘non-initial’ tokens). If the first character is neither an implied
LET nor one of the initial tokens, the program ends via the syntax-error routine. If it
is an initial token, the program does a little juggling with the token’s value
(explained below) to pick up the address for the relevant command’s subroutine;
then places the two bytes of this address on the stack; and then jumps (rather than
calls) to the BC subroutine, so that the BC routine ‘returns’ ta,the BASIC command’s
routine rather than to the routine which actually called it. The RTS at the end of the
BASIC command’s subroutine does return to the original calling routine — the A5FF
routine, so that the program then loops round to look for another BASIC statement.
This juggling with the stack is a little complicated, especially as the addresses placed
onto the stack (the apparent addresses for the command routines) are all one byte
less than they should be — an RTS machine-code instruction adds one to the
address it finds on the stack.

Tokens are functionally divided into three different groups: the ‘initial words’,
the commands, from 80,, (END) to 9B,, (NEW); the operators (+, -, / and the others)
and a few assorted functions like TAB(, THEN and STEP, from 9C,, to AC,; and the

The ‘execute BASIC statement’
subroutine (A5FF)

must be
mplied LET
o™ ASLA, TAY (aTB9)
ERROR (double token |
volue) call AD§e, gek!

functions, from AD, (SGN) to C3,, (MID$). The addresses for the commands are
found by ignoring the top bit of the token (so that FOR’s token 81,;, becomes 01,
for example) and then doubling it with an ASL A opcode; a TAY opche then
transfers this to the Y register; the address is then picked up by the m.ach’me-code
commands LDA (A000),Y : PHA : LDA (A001),Y : PHA, leaving the routine’s address
(minus one!) on the stack, for the ‘return’ at the end of the BCroutine to flnd.. There
are twenty-eight ‘initial’ tokens; their addresses thus occupy the first fifty-six bytes
in the table, from A000 to A037.)

The next group stored in the table is not the operators, but the functions. These
are called within the execution of the main BASIC commands, or rather by the
‘evaluate an expression’ and similar routines, and are processed by asubroutine at
AC27. Much the same technique is used to get the address, usmg'the ASL, TAY
technique to double the token number (with high bit ignored) and pointto the right
pair of addresses in the table. The ASL is at AC27, the TAY at AC55; but the addresses
are the true ones, not ‘minus-one’, because they are stored in memory rat!'ner than
on the stack. The program stores them at 00A2, A3, and jumps to them by (:iOlng aJSR
00A1 — a 4C (JMP) opcode being placed there by the cold-start routine, so the
whole thing works out as a rather neat ‘JSR indirect’. A confusing point here is that
because there is a ‘gap’ in the table — the addresses for the operators tokgns have
been skipped — the doubled token value is added not to A000 but to an invented

¢

g

‘~

d

<

base address of 9FDE in order to pick up the token’s addresses. The address table for
the function subroutines is stored from A038 (SGN) to A065 (MID$).

The reserved words, with the top bit set on the last letter of each, are stored in a
table beginning at A084, and the error messages are stored in the same way (hence
the odd graphics for the second letter of error messages on video systems) along
with other assorted messages like ERROR and BREAK in a table that follows the
reserved-word list from A764 to ATA0. But there is an odd gap between the end of
the function address table and the reserved-word list — and this turns out to be an
odd list for the operators.)

The first batch of operators, from 9C,, (TAB) to A2, (STEP) are called only within
one command routine, and thus need no subroutines of their own. But the others
do have their own subroutines; but the table stores three bytes for each, nottwo —
the first byte being some kind of constant whose function we haven’t yet
deciphered. The addresses shown for each of the arithmetic and logical operators,
from A3, (+) to AC,, (<), are collected in the same way as for the commands, by
placing them on the stack; the addresses in the table are thus again one lower than
the actual address of the relevant subroutine for each.

The following table, which summarises all this, should give you some indication of
where to point your disassembier in the next stage of disentangling OSI’s BASIC!

BASIC-word Subroutine Location
location BASIC keyword Token location in table
A084 END 80 A639+1 A000
A087 FOR 81 A555+1 A002
AO08A NEXT 82 AA3F+1 A004
AO08E DATA 83 A70B +1 A006
A092 INPUT 84 A922+1 A008
A097 DIM 85 ADO00+1 AO00A
AQ09A READ 86 A94E +1 A00C
AQ9E LET 87 A7B8+1 AOQOE
AOA1 GOTO 88 A6B8+1 A010
AOAS RUN 89 A690+1 A012
AOQA8 IF 8A A73B +1 A014
AOAA RESTORE 8B A619+1 A016
AO0B1 GOSUB 8C A69B +1 A018
AO0B6 RETURN 8D AG6E5 +1 AO0TA
A0BC REM 8E A74E +1 A01C
AOBF STOP 8F A637 +1 AO01E
A0C3 ON 90 A75E+1 A020
A0C5 NULL 91 A67A +1 A022
A0C9 WAIT 92 B431+1 A024
AO0CD LOAD 93 FFF3+1 A026
AO0D1 SAVE 94 FFF6+1 A028
AO0D5 DEF 95 AFDD +1 A02A
A0D8 POKE 96 B428+1 A02C
AODC PRINT 97 A82E+1 AO02E
AOE1 CONT 98 A660+1 A030
AOE5 LIST 99 A4B4+1 A032
AOE9 CLEAR 9A A68B +1 A034
AOEE NEW 9B A460+1 A036

AOF1 TAB(9C (none) | " Designs on OEM

AOF5 TO 9D (none) f p — or how to dedicate your Superboard
AOF7 FN 9E (none)]
AOF9 SPC(9F (none) 1 A string of fairly random comments and discussions with dealers and with one of our
AOFD THEN A0 (none) 1 members who uses Superboards as weighing-machine controllers started me
A101 NOT Al (none) E thinking along these lines — that the Superboard can be modified surprisingly easily
A104 STEP A2 (none) 1 to work as a process controller in applications where BASIC is fast enough for the
A108 3+ A3 B46E +1 A067 ; job.
A109 - A4 B457 +1 AO06A j This is not as daft as it sounds. Sure, a Superboard costs a lot more than, say the
A10A * A5 B5FD +1 A06D Acorn as a process controller; but designing and implementing a control_ program
A10B / A6 B6CC +1 A070 that takes more than half a dozen factors into account is no joke in machine-code,
A10C N A7 BAB5+1 A073 especially if one of the factors is collecting operator input. Hardware is soft, software
A10D AND A8 AC68+1 A076 , is hard — as the expression goes — and anything that is hard is expensive. For many
A110 OR A9 AC65+1 A079 v] applications, the relative simplicity of software design in BASIC easily recovers the
A112 > AA BAEE +1 A07C ‘a D higher initial cost of the hardware.
A113 = AB ABD7 +1 AOQ7F y So how can this be done with the Superboard? The answer, of course, is to start at
A114 < AC AC95+1 A082 the beginning — in this case the 6502’s reset vector — and throw away anything
AD B7D8 A038 1 which is not actually needed for the job.
AT115 SGN AO3A ‘ On reset, the existing monitor jumps to the message ‘D/C/W/M’ — of which we
A118 INT AE B862 A03C : can presume that a small controller will be needing neither discs nor user-access to
A11B ABS AF B7F5 AO3E any machine-code monitor. This leaves Cold or Warm start for BASIC. It should not
ATIE USR BO 000A A040] be difficult to implement a hardware ‘power-on reset’, leaving the ‘reset’, as far as
A121 FRE B1 AFAD A04D | the user is concerned, to be a direct warm-start to the BASIC program rather thana
A124 POS B2 AFCE A0 1 choice of entry to cold or warm start. The existing vectors for cold and warm start are
A127 SQR B3 BAAC ot ; to BD11 and 0000 respectively.
A12A RND B4 BBCO 'A048] The trick here would be to duplicate the functions of the existing cold-start
A12D LOG B5 BSBD AG4A 4 routine without bothering with the existing user-defined calls for memory-size or
A130 EXP B6 BB1B AD4C terminal width — since these will be predetermined by the application in hand
A133 COs B7 BBFC AO4E 4 rather than the operator’s whims. As long as your new routine (presumably heldina
A136 SIN B8 BCO03 w050 . replacement for the existing monitor ROM) does everything that the existing cold-
A139 TAN B9 BC4C 'AQ52 f start routine does, setting up the various flags and limits like memory size, and
A13C ATN BA BC99 Py 1 finishes by placing the warm-start vector in 0007, 02, a new entry with your own
A13F PEEK BB B41E 'AQS6 ' messages is practicable. The other vector that BASIC wants is a warm-start one,
A143 LEN BC B38C 'A038 ‘ i ‘ stored in 0004, 05 by the cold-start routine. In the existing system this points to the
A146 STR$ BD B08C AOSA ’ message-printer routine at A8C3, in order to print the ‘OK’ message on warm-start;
A14A VAL BE B3BD A0SC ! but there is no reason why it should not be reset by a new cold-start routine to point
A14D ASC BF B398 AOSE ' somewhere else, such as a direct RUNning of a BASIC program in EPROM.
A150 CHR$ co B2FC D80 There is space on the board, and the address decoding, for up to 6K of additional
A154 LEFT$ Cc1 B310 'A0G2 1 PROM — if you know where to look. The board has been designed to handle a
A159 RIGHT$ C2 B33C 'A064 single 8K BASIC chip as well as the existing four 2K ROMs; the address decoding for
A15F MID$ a3 B347 : the 8K chip goes to the last of the four ROM sockets. There is also a chip-select line
on the schematicthat is described as ‘not-BAS’, and appears to select the other three
sockets independently of the fourth. By inserting a small board with four sockets
into the last BASIC socket, and moving the BASIC ROMs up to it, changing the
; board links accordingly, would free the other, three sockets for three additional 2K
‘ ~ PROMs — enough for a 6K BASIC program. It does not seem possible, though to
) ~/ replace the 2114 RAMs with EPROMs — to my knowledge there is no pin-
' compatible EPROM.
Designing BASIC software to go into an EPROM should not be too difficult. The

only tricky point is that the BASIC pointers for variables, arrays, strings and the like
all pointabove the program space. If the existing BASIC is to be used, any scratchpad
RAM for BASIC use will have to be above the program. This means that the program
will have to end on the boundary of a PROM, or else variables and the like will be
lost by trying to write into the PROM space instead of into the RAM above. This is
easily solved, though, by ‘padding out’ the final program with REM statements. For
the same reason, it would also be sensible to reset the start of BASIC program space
(currently defined , by the existing cold-start routine, at 0307, preceded by a null) to
a higher page boundary on the boundary of a ROM, such as at 0400 or, more prac-
tically, at 0800, during the new cold-start routine.

A detailed study of the existing cold-start routine from BD117 to BE38 should clarify
most of the problems involved in designing software/firmware for OEM

applications. Let us know how you get on!
Tom Graves

«

‘?

Disc System Notes

A warning on hard discs

Hard discs sound like a really nice idea — enormous mass memory that’s fast
enough to use as RAM. But there’s an old saying about ‘all your eggs in one
basket’. .. — in other words reliable back-up. Since the whole point of hard discs is
that they are enormous and fast, any back-up system is thus, by comparison, small
and slow. But back-up is essential — don’t skimp it!

A nastier problem also arises for UK users of hard discs, regardless of make of
either hard disc or computer system. If, or rather when, they develop any sort of
fault, they cannot be repaired in the UK. They have to be dismantled in a special
‘clean room’ — and the nearest one isin Munich. . . while most, of course, are in the
States. Shugart, we’re told, intend building a ‘clean room’ here sometime, but
there’s no definite date as yet. Sending the disc to the States means a long,
expensive, disc-less wait — and unless you’ve done that back-up that you should
have done, you’ll be without your vast data-base too, since that, of course, is on the
disc...

OS-CP/M — an assortment of errors

The early versions of OS-CP/M had their assorted bugs, as can be expected; the
trouble is that the newer versions have newer bugs. The COBOL implementation
apparently still doesn’t work (but I’m told that it’s not all that unusual for COBOLs to
crash). There are, however, other errors 6f a more common kind.

The May ’80 issue of Dr Dobbs Journal (Vol.5 No.5) had an article and a letter
pointing out several of these problems. One is a problem with TAB (as CHR$(9),
ASCIl’s HT command); but more serious are the two bad 170 bungles. The first is
that the serial ports starting at CF00 (the multi-user 550 board) are initialised
correctly on boot-up by the track-0 routine, but are then ‘clobbered’ by part of the
loading sequence for CP/M — the system locks up if any attempt is made to use

the fact that the Microsoft Altair BASIC’s IN, OUT and WAIT commands are writt;
to'use the Z-80’s parallel ports. But the C3 doesn’t have parallel ports; it uses the
6502’s serial ports (the ACIAs) instead; so these commands lock up — not surpris-
ingly — in trying to pass parallel information through serial ports!

those ports. The other and even more stupid error is that OSI made no allowance for I

S5} S

¢

e)

o

«

The article in Dr Dobbs describes fixes for these and a few other problems — so

get hold of a copy while you can. The series of articles on Cand tiny-Ci i
e Iteronne tiny-C in that issue

65U — POKEs about INPUT
V\{e had a note from SJC Fox of Microcode (65 Landswood Park, Hartford, North-
wich, Cheshire) about some useful POKEs in 65U. He writes: '

POKE 2972,13: POKE 2976,13 enables BASIC to inputa complete line, commas and
all. values of 58 (ASCII :) and 44 (ASCII ,) respectively restore the normal operation
of INPUT. This came from one of OSI’s programs — DMS | think.

POKE 2888,0 disables the break on carriage-return-only in INPUT and returns a
Eu:: to string inputs and 0 to numeric inputs. A value of 27 restores the normal
b:d as\i,:i(:eu;ff Tehcltss.ls my own modification of an OS-65D POKE and appears to have no

Following on from last issue’s notes on date storage in
any other ‘empty’ areas that can be used as permasent Sigésegeiﬂgyggfsm%:ef

know of a POKE to simulate ctrl-D in 65U (the * ime’
o ofa POk (the‘one page at atime’ effect), and ctrl-W

gSD (v3.1) —1/0 gislribution

or users interested in writing their own 1/0 routines, we foun

that descnb_es the look-up tables for the input and output routigeas.r;'c::ifr:gtrz 215(;
output routines are selected by bits being set on a flag byte (at 8993 for input, 8994
for output — both locations decimal). 65D collects the addresses of the chosen 170
fubroutl’qes from a table (from 2307-2320,4), shown below. Note that the stored
‘address is zflways one lower than the true address of each routine. The system uses a
stack trick’ to reach the routine, like BASIC-in-ROM’s way of collecting its
commands — see the article on BASIC execution elsewhere in this issue.

Flag (a.t 2337,;) Input table
Flag bit Addr. shows: Subroutine and address
0 2301 F5 24 Console serial port 24F6
1 03 2A 25 Polled keyboard 252B
2 05 17 25 430 boar 2518
3 07 8523 Null input 2386
4 09 88 23 Memory 2389
5 0B A0 23 Disk device 06 23A1
6 0D EF 23 Disk device 07 23F0
7 OF AF 24 550 board (serial ports) 24B0
Flag (at 2338,) Output table ,
Flag bit Addr. shows: Subroutine and address
0 231 CC 24 Console serial port 24CD
1 13 98 25 - 440/540 video 2599
2 A5 . 0C 25 430 board 250D
3 ,. 17 ° 9E 24 Line printer 249F
4 : 19 - 8F 23 Memory 2390 ,
O 5 18 B123 Disk device 06 23B2 2
,"§ 1D 02 24 Disk device 07 2403 ¢
ST 1F BC 24 550 serial board 24BD N

65D — copying mini-floppies on single-drive systems

Another note from OSI purported to ‘explain the proper procedure’ for doing this." t’ " t

It doesn’t, of course; it was clear (because the note wasn’t clear) that if you followed
their instructions to the letter you would end up very quickly with an initialised —
and thus erased — original system diskette. '

Since the procedure is obviously a little long-winded under 65D, would a member
with practical experience of this please send us a n~ e on the true ‘proper
procedure’?

65D — failure on write retry poNg

Another OSI note, this time a little clearer. A problem that apparently manifests
sometimes on both 5” and 8” floppy versions of both 65D V3.0 and V3.1 (the current
issue), manifesting as a system failure if a retry occurred on a write to disc. OSI’s
notes cover the whole ‘conversation’, including all machine output; we show only
the operator input, with any essential machine prompts (and comments) in italics.

Use a CR (carriage-return) on each line unless otherwise stated. From boot: y,

UNLOCK

EXIT

EM enter extended monitor, for use later

EX exit to DOS, but leave ExMon in language area
CALL 0200=01,2 diskette utilities: for mini-floppies CALL 0200=13,1
GO 0200

2 select track-0 read/write utility

R4200 read track-0 into 4200, on

E

RET EM back to ExMon

24886

4886/13 28

24898

4898/D0 4C (line-feed)

4899/6F 09 (line-feed)

489A/60 28

EX

GO 0200 ‘.
2

W4200/2200,8 write new version into track-0
E
BASIC and exit to BASIC Do E

65D — fix for assembler ‘hang-up’ on C1/Superboard disc only

Another OSI note: to quote, ‘the sequence below will correct the problem with the
assembler ‘hanging up’ on a CH-1P’. (OS-65D V3.0 and V3.1). After boot, unlock
BASIC, exit to DOS and call EM (ExMon). Then:

21563
1563/6D 9F (line-feed) (Jlo~ <~
1564/15 24 _
EX exif to DOS CALL d2oo s o6, ".;\}
SAVE @81=1200/5 -
“AG) 4
LA 6 &
J 5o

65D — fix for ExXMon to print 6502’s registers on breakpoint
Also from OSI, for V3.0 and V3.1, and evidently for mini and full floppies. Get into
‘xMon after boot, then:

ICALL 4700=07,1 for mini-floppy use |CALL 4700=10,1
a4B68

4B68/B8 C2

ISAVE 07,1=4700/9 for mini-floppy use !SAVE 10,1=4700/8
and exit as required.

65D — fix to permit random file access beyond 01383

Another OSI dealer-issue note, for V3.0 and V3.1. Enter ExMon after boot, then:
ICALL 4E79=08,4 for mini-floppy use |CALL 4E79=12,4

a4Fo0

4F00/30 30 (line-feed)

; 4F01/16 65
‘ ~a4F18

4F18/AD EA (line-feed)
4F19/92 EA (line-feed)

4F1A/2F EA (line-feed)
4F1B/18 F8 (line-feed)

4F1C/F8 18

a4F67

4F67/00 AD (line-feed)
4F68/00 92 (line-feed)

4F69/00 2F (line-feed)

4F6A/00 FO
4F6B/00 AF
4F6C/00 F8
4F6D/00 18
4F6E/00 AA
4F6F/00 A9
4F70/00 00
4F71/00 69
4F72/00 01

" 4F73/00 CA

4F74/00 DO
4F75/00 FB
4F76/00 FO
4F77/00 A4
EXIT

(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)
(line-feed)

SAVE 08,4=4E79,1 for mini-floppy use SAVE 12,4=4E79,1

65D and WP-2 — fix for output problems

OSl note: corrects problem with (540 board) video based systems ‘hanging-up’
under WP-2 whenever an L command was given; also corrects a general problemin
65D and WP-2 when outputting to higher numbered devices. The problem surfaced

\ if a ctrl-C or ctrl-S was entered while outputting to a given device and a higher

" numbered device. The output would appear on the lowest numbered device, but
not on the higher numbered device. To install the fix, enter ExMon after boot, then:

\

ICALL 0200=01,2 diskette utilities: for mini-floppy use |CALL 0200=13,1
If changes are being made to WP-2, insert WP-2 into drive ‘A’ at this point.

1GO 0200

2 select track-0 read/write utility
R4200 read track-0 into 4200, onwards

E

RET EM return to ExMon
a4339

4339/AD A0 (line-feed)
433A/21 00 (line-feed)
433B/23 AD (line-feed)
433C/A0 21 (line-feed)
433D/00 23 (line-feed)
433E/F0 DO

a434D

434D/4A DO (line-feed)
434E/E8 22 (line-feed)
434F/90 E8 (line-feed)
4350/09 4A (line-feed)
4351/48 90 (line-feed)
4352/8A 09 (line-feed)
4353/48 48 (line-feed)
4354/20 8A (line-feed)
4355/71 48 (line-feed)
4356/23 20 (line-feed)
4357/68 76 (line-feed)
4358/AA 23 (line-feed)
4359/68 68 (line-feed)
435A/E0 AA (line-feed)
435B/07 68 (line-feed)
435C/D0 DO (line-feed)
435D/EF F1

a4371

4371/0A 8C (line-feed)
4372/8D 78 (line-feed)
4373/78 23 (line-feed)
4374/23 DO (line-feed)
4375/98 D9 (line-feed)
4376/18 0A

1GO 0200

2 recall track-0 read/write utility
W4200/2200,8 write new version into track-0

E back to DOS
and exit as required.

Note: our typesetter has most but not all ASCII characters: two substitutions h
to be made, namely a for the ‘at’ character (ASCII 40,¢) and O for ‘hash’ (ASCII

T ~—rr—y

Copyright 1980 OSI UK User Group, unless otherwise stated.

g

e I

